Tris (indenyl) lanthanum (III) derivatives with two stereogenic centres: crystal structures and solution NMR spectroscopy of the adducts $\left[\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot \mathrm{L}\right]$ with $\mathrm{L}=(\mathrm{R})-(+)$-methyl-p-tolylsulphoxide and triphenylphosphinoxide

Jingwen Guan, R. Dieter Fischer *
Insiinu filr Anorganische und Angewandre Chemie der Uni'ersidid Hamburg, Martin-Luzher-King-Plaz 6. D-20146 Hamburg, Germany

Received 12 July 1996; revised 20 August 1996

Abstract

Three new adducts of the type $\left[\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot \mathrm{L}\right]$ with $\mathrm{L}=(\mathbf{R} \boldsymbol{-}(+)$-methyl-p-tolylsulphoxide $\mathbf{1}$, triphenylphosphinoxide 2 and diphenyisulphoxide 3 have been prepared and further characterized. The crystal structures of 1 and 2 were determined from single crystals. 1 crystallizes as one distinct epimeric form with two 'equatorially' and one 'meridionally' oriented $\mathrm{C}_{9} \mathrm{H}_{7}$ ligands. Space groupp $P 2_{1}$; cell parameters $a=838.30(10), b=966.5(3), c=1770.5(7) \mathrm{pm}, \beta=90.82(2)^{3}$. Crystals of 2 contain two crystallographically equivaleat diastereomers with three disordered but essentially "equatorial' $\mathrm{C}_{9} \mathrm{H}_{7}$ ligands. The $\mathrm{P}\left(\mathrm{C}_{0} \mathrm{H}_{5}\right)_{3}$ propellers adopt either of two possible enantiomorphic configurations. Space group $R \overline{3}$; cell parameters $a=b=1451.1(3), c=3136.6(7) p m$. The solution ${ }^{1} \mathrm{H}$ NMR spectro of $\mathbf{1 - 3}$ clearly reflect rapid intramolecular motion of the $\mathrm{C}_{\boldsymbol{g}} \mathrm{H}_{7}$ ligands. The quasi-first-order spectrum of 1 is indicative of significant diastereotopic splitting, displaying a total of seven individual $\mathrm{C}_{4} \mathrm{H}_{7}$ proton resonances.

Keywords: Lanthanum; Indenyl; Sulphoxides; Triphenylphosphinoxide; Crystal strucrures; Nuclear magnetic resonance

1. Introduction

Homoleptic tris(indenyl)metal fragments $\left[\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{M}\right]^{4}(q=0, \mathrm{M}=$ trivalent rare earth metal; $q=+1, \mathrm{M}=$ terravalent actinoid metal) may, in some of their possible conformations, be considered as prochiral (for precise definitions see Ref. [1]. Thus, addition of a fourth (uncharged or anionic) ligand L should afford an enantiomeric pair of $\left[\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot \mathrm{L}\right]$ complexes of type A as long as all three $\mathrm{C}_{9} \mathrm{H}_{7}$ ligands are oriented 'head-to-tail' in 'equatorial' positions as shown in Fig. l(a). Chiral $\left[\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{M} \cdot \mathrm{L}\right]$ systems should also result from the (already chiral) conformations depicted in Fig. I(b) and Fig. 1(c), wherein one $\mathrm{C}_{9} \mathrm{H}_{7}$ ligand is assumed to be oriented 'meridional" (symbolized by a small circle), i.e. with its benzo group either cisoid (type B) or transoid (type C) to the additional (*axial') M-L bond. [($\left.\left.\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{M} \cdot \mathrm{L}\right]$ systems involving all-cisoid (type D) or all-transoid (type E)

[^0]positioned benzo groups (Fig. l(d)) should, in contrash. be achiral. [Strictly speaking, all configurations in which the main axes of the three equivalent $\mathrm{C}_{9} \mathrm{H}_{7}$ ligands do not run parallel to the M-L axis should be chiral.]

Owing to the usually facile rotation of indenyl ligands about their $\left(\mathrm{C}_{5}-\right.$) ring centre-to-metal axes, all former structural studies were focused on crystalline samples, as crystal packing effects may efficiently reduce most intra- and intermolecular mobility. Table I presents a survey of results based on the single-crystal X-ray studies of various tris(indenyl) metal complexes including also derivatives with partially alkylated indenyl ligands. Several examples resembling closely either of the four 'ideal' complex types A, B, C and D may actually be distinguished. The information collected in Table 1 suggests that type D may be favoured in cases of minimal, and type A of maximal, space demand for L and eventual substituents of distinct indenyl \mathbf{H} atoms. For instance, the α carbon atoms of $\mathrm{L}=$ THF in 16-19 (type A) carry four \mathbf{H} atoms which require more space than the two H atoms in the a positions of $\mathrm{L}=$ pyridine in complex 12 (type B). Inter-

\longrightarrow principal axis of a $\mathrm{C}_{9} \mathrm{H}_{7}$ unit (arrow starting at C_{2})

 arrow oriented downward arrow oriented upwardFig. 1. Schematic description of four alternative conformations of the $\left(\mathrm{C}_{\mathbf{y}} \mathrm{H}_{7}\right)_{3} \mathrm{M}^{4}$ fragment.
estingly, the space groups of most of the complexes adopting type A or B are achiral, indicating that the lattices of those principally chiral molecules tend to involve their racemic mixtures. So far, only the complexes 18 and 19 seem to crystallize enantiomerically
pure. However, the chiral and acentric space groups $P 2,2,2$, of the two type D complexes 4 and 5 are unlikely to originate from molecular dissymmetry as long as the point symmetry of an individual molecule is as high as $\mathrm{C}_{3 \mathrm{v}}$. The dinuclear anions of compounds

Table 1
A survey of the confommational variety of tris(indenyl) meal complexes bused on the single crystal X-rily sudtes

Number	Compound	Complex type	Spase Group	Hapticity :	Ref.
4	[$\left.\left(\mathrm{C}_{6} \mathrm{H}_{7}\right)_{3} \mathrm{UCl}\right]$	D	P2, $\mathbf{2}^{2}{ }^{2}$	η^{5}	[2]
5	[$\left.\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{UBr}\right]$	D	P2,2,2,	η^{3}	13]
6	[$\left.\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{UI}\right]$	A	$\mathrm{P}_{2} 1_{1} /{ }^{\text {c }}$	η^{3}	[4]
7,8	$\left[\left(1,4,7-\mathrm{Me}_{3} \mathrm{C}_{4} \mathrm{H}_{4}\right)_{3} \mathrm{MCl}\right](\mathrm{M}=\mathrm{Tt} . \mathrm{U})$	A	$\mathrm{P}^{2} 1 / \mathrm{l}$	η^{3}	[5.6]
9	[$\left.\left(1-\mathrm{EtC}_{9} \mathrm{H}_{6}\right)_{3} \mathrm{ThCl}\right]$	A	$\boldsymbol{P} \mathrm{S}_{1} / \mathrm{c}$	η^{3}	[7]
10	[$\left.\left(1,2,4,5,6,7-\mathrm{Me}_{6} \mathrm{C}_{9} \mathrm{H}\right)_{3} \mathrm{UCl}\right]$	C	$P \overline{1}$	η^{\prime}	[8]
11	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{UOCH}_{3} \mathrm{CF}_{3}\right]^{6}$	$\mathrm{B}^{\text {d }}$	$P \mathrm{P}_{1} / \mathrm{C}$	η^{3}	[9]
12	$\left[\left(\mathrm{C}_{9} \mathrm{H}, \mathrm{Ce} \cdot \mathrm{NC}_{5} \mathrm{H}_{5}\right]^{\text {n }}\right.$	C	Phac	η^{3}	[10]
13-15		B	$P \overline{1}$	$7{ }^{5}$	[11.12]
16. 17	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{M} \cdot \mathrm{THF}\right](\mathrm{M}=\mathrm{La} . \mathrm{Pr})$	$A^{\text {d }}$	$\mathrm{P}_{2}{ }_{1} / a$	η_{5}^{5}	[13]
18.19	$\left[\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{M} \cdot \mathrm{THF}\right](\mathrm{M}=\mathrm{Nd}, \mathrm{Gd})$	A	PG_{3}	η^{5}	[14]

[^1]13-15 are the first tris(indenyl)metal complexes with two stereogenic centres. According to the literature [11.12], only the corresponding meso form is realized. In our present study, we wish to extend the series of $\left[\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot \mathrm{L}\right]$ systems towards the first examples involving another stercogenic centre in the Lewis base molecule L. Commercially available (R). (+)-methyl-p-tolylsulphoxide (MTSO) was chosen as a promising. unequivocally chiral base, while triphenylphosphinoxide (TPPO) was selected owing :s its capability to generate a conformationaily quite labile, stereogenic centre by orienting its three phenyl groups in a propeller-like dissymmetric fashion [15-17]. Paricular interest will be focused on the potential interplay of the two principally independent chirality centres of the new adducts. To explore the molecular structures adopted outside a crystal lattice, we have also investigated the solution ${ }^{1} \mathrm{H}$ NMR spectra of the udducts with MTSO 1 and TPPO 2, as well as of the non-chiral adduct 3 with $\mathrm{L}=$ SO(Ch $\left.\mathrm{H}_{\mathrm{G}}\right)_{2}$ (DPSO).

2. Experimental section

All operations had to be carried out under pure nitrogen using standard Schlenk techniques, and all solvents were dried and distilled over $\mathrm{Na}-\mathrm{K}$ alloy with
benzophenone ketyl. Anhydrous LaCl_{3} was prepared according to the literature [18], and $\mathrm{NaC}_{9} \mathrm{H}_{7}$ by treating indene with an excess of Na pearls in THF. [$\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{La}$ -THF] was prepared according to Ref. [19]. The lanthanum content of 1-3 was determined by complexometric titration with EDTA, and the C/H content on a Heraeus CHN-O-Rapid analyser. IR spectra were recorded on a Perkin-Elmer 1720 FT-IR spectrometer. ${ }^{\prime}$ H NMR spectra of 1 were recorded on a Bruker AM 360 spectrometer, and of 2 and 3 on a Varian Gemini 200 MHz insirument.

2.1. Preparation of $\left[\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{La}-(\mathrm{R})-(+)\right.$-MTSOI (1)

Freshly prepared $\left[\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot\right.$ THF] $(2.203 \mathrm{~g}$, 3.96 mmol) was dried in vacuo at $100^{\circ} \mathrm{C}$ for 3 h ; after cooling to room temperature, 10 ml of tolvene was added under stirring. Within 10 min , (R)-(+)-MTSO (Fluka, $0.62 \mathrm{~g}, 4 \mathrm{mmol}$) dissolved in 35 ml of toluene was added under stiming. Very quickly, the reaction mixiure became an almost transparent solution. After stirring for one day, filtering (G 4 frit), concentration of the filtrate, cooling ovemight to ca. $0^{\circ} \mathrm{C}$ and drying, colourless crystals were collected (ca. 2.02 g , yield 80%). Decomp. temperature $143-144^{\circ} \mathrm{C}$. Anal. Found: C, 65.05; H. 4.88; La, 22.17. $\mathrm{C}_{35} \mathrm{H}_{31}$ OSLa Calc.: C. 65.86; H, 4.85; $\mathrm{La}, 21.76 \%$. IR spectra (KBr pellet, cm^{-1}):

Table 2
Summary of trystal data and debils of data collection and sefinement for 1 and 2

	1	2
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{4} \mathrm{LaOS}$	$\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{LaOP}$
Formula weight	638.57	762.62
Temperalure (K)	293(2)	293(2)
Diffractoreter	Syntex ma_{1}	Syntex P21
Wuvelength (pm)	71.073	71.073
Cryital system	monoclinic	trigonal
Space group		$R \overline{3}$
Unit cell dimensions (pm)	$\begin{aligned} & a=838.30(10\} \\ & b=96.5 .5(3) \end{aligned}$	$\begin{aligned} & a=1451.1(3) \\ & b=1451.1(3) \end{aligned}$
	$r=1770.517)$	$c=3136.6(7)$
	$\beta=90.82^{\circ}$	$\beta=90^{\circ}$
Volume (nmi)	1.434317)	5.709(2)
Z	,	6
Density (calc.) (mgem ${ }^{-3}$)	1.479	1.317
Absorption crefficient (mm^{-1})	1.588	1.184
$F(001)$	644	2316
A Range for data collection	2.30 to 27.57°	281 to 34.99°
Index rames	$\begin{aligned} & -2 \leq h \leq 10 \\ & -2 \leq k \leq 12 \\ & -23 \leq 1 \leq 23 \end{aligned}$	$\begin{aligned} & -2 \leq h \leq 17 \\ & -2 \leq k \leq 17 \\ & -41 \leq 1 \leq 41 \end{aligned}$
Retlections collected	5966	4078
Independent retlections	$4287\left(R_{1}=0.0273\right)$	$2052\left(R_{i}=0.0632\right)$
Datio/restraints/parameters	4287/1/347	2249/73/197
Goudness of fir on $F^{\text {? }}$	1.136	1.079
Final R indices $[I>2 \pi(I)] R_{1} / w \cdot R_{2}$	0.0393/0.0973	0.0475/0.1175
R indices (all data) $R_{1} / \mathrm{w} R_{2}$	0.0403/0.0987	0.0518/0.1222
Ahsolute sinctire paramerer	0.01(2)	0.0025(3)
Lurgest difference peak and hole (nm^{-1})	1097 and -2670	617 and - 502

3060(w), 2920(w), 1708(w), $1597(\mathrm{~m}), 1559(\mathrm{~m})$, $1494(\mathrm{~m}), 1457(\mathrm{~m}), 1394(\mathrm{~m}, \mathrm{sh}), 1313(\mathrm{~m}, \mathrm{br}), 1150(\mathrm{~s})$. 1122(w), 1089(s), 1038(s,br), 1018(w), 948(m,br), $915(\mathrm{w}, \mathrm{sh}), 862(\mathrm{~m}, \mathrm{sh}), 810(\mathrm{~s}, \mathrm{sh}), 767(\mathrm{vs}, \mathrm{sh}), 719(\mathrm{~m}, \mathrm{sh})$, 694(m,sh). ${ }^{1}$ H NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): see Table 7.

2.2. Preparation of $\left[\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot \mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right)_{3}\right](2)$

Colourless microcrystals of $\left[\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot \mathrm{THF}\right]$ ($0.47 \mathrm{~g}, 0.845 \mathrm{mmol}$) were conditioned as above and suspended in 20 ml of toluene. After cooling to $0^{\circ} \mathrm{C}$ and addition of $0.23 \mathrm{~g}(0.84 \mathrm{mmol})$ of OPPh_{3} dissolved in 20 ml of toluene, the initially yellow reaction mixture soon became colourless. After stirring far another 4 h at room temperature, and subsequent warming to ca. $50-$ $60^{\circ} \mathrm{C}$, the sediment was completely dissolved, affording again a bright yellow solution. After filtration and slow

Table 3
Atom coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parumeters ($\mathrm{pm}^{2} \times 10^{-1}$) for l . with estimated standard deviations in parentheses

Atom	r	y	$=$	$U_{\text {(15) }}$
La	9877(1)	9992(1)	7880(1)	31(1)
S(1)	(2036(2)	6684(2)	7538(1)	121)
O(1)	1189066)	8254(6)	7559(3)	49(1)
C(1)	1036607)	1057088)	9420(3)	46(1)
C(2)	11218(7)	9364(8)	9299(3)	47(1)
C(3)	101760 (6)	8223(7)	9229(3)	42(1)
C(4)	8599(6)	8745(6)	9354(3)	38(1)
C(5)	$8713(6)$	10216(8)	9450¢2)	$40(2)$
C(6)	$7305(8)$	1100月7)	9576(3)	49(1)
C(7)	$5901(7)$	$10316(8)$	$9663(4)$	54(2)
C(8)	$5802(7)$	8855(9)	$9612(4)$	$51(2)$
C(9)	$7126(6)$	8077(7)	9451(3)	45(1)
C(1)	10199(7)	12696(8)	7211 (3)	48(1)
C(12)	$11217(8)$	$11820 \mathrm{~m})$	$6 / 956$	$51(1)$
C(13)	$12516(8)$	11492(8)	7279(5)	58(2)
C(14)	$12310(8)$	12108(8)	$7976(4)$	57(2)
[(15)	10480(8)	12882(7)	7948(3)	50 (1)
C(16)	$8725(10)$	$13370(8)$	7021(5)	65(2)
C(17)	$8000411)$	14144(9)	$7543(6)$	$74(2)$
C(18)	8608(13)	14303(8)	$826016)$	84(3)
C(19)	10039(12)	$13705(8)$	8491(4)	$70(2)$
C(21)	8212(7)	8279(7)	6748(3)	44(1)
C(20)	7759(6)	$9653(7)$	65164)	46(2)
C(23)	6846(6)	10262(6)	7100(3)	46(2)
C(24)	$6682(6)$	9246(7)	76655 (3)	45(1)
C(25)	$7542(7)$	8041 (7)	7477(3)	$45(1)$
C(26)	$8208(7)$	10148(12)	5782(3)	58(2)
C(27)	$9066(10)$	9282(12)	$5333(4)$	72(2)
C(28)	9527(10)	$7945111)$	5564(4)	73(2)
C(29)	$9109(8)$	7349(9)	626\%(4)	6642)
C(31)	13295(6)	6302(6)	6760(3)	39(1)
C(32)	$14115(7)$	7355(7)	6402(3)	47(1)
C(33)	15110(7)	6993 (8)	5806 (3)	$51(1)$
C(34)	15306(7)	56.34(9)	$5585(3)$	52(1)
C(35)	$14495(10)$	461.3(8)	5966(4)	$63(2)$
C(36)	134736)	4959(12)	65543)	56(1)
C(37)	16427(11)	5286(1)	4944(5)	46(3)
C(38)	1.3452 8)	6:8049)	$8278(4)$	59(2)

Table 4
Arom coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters ($\mathrm{pm}^{2} \times 10^{-1}$) for 2 , with estimated standard deviations in parentheses

Atom	r	y	z	U_{44}
$1 \mathrm{a}(1)$	0	0	2214 (1)	6911)
C(I)	679(5)	$-1611(6)$	2225(2)	$129(8)$
C(2)	$235(6)$	$-1703(6)$	2623(2)	138(10)
C(3)	-852(6)	$-2106(7)$	2572(2)	1.39(10)
C(4)	$-1071(5)$	$-2217(7)$	2141(3)	97(6)
C(5)	-134(6)	-1957(7)	1928(2)	$91(3)$
C(6)	849(9)	-1533(6)	2983(3)	158(7)
C(7)	1907(8)	$-1271(9)$	2945(4)	203(13)
C(8)	2351 (6)	- $1179(9)$	2547(5)	16048)
C(9)	1737(5)	$-1349(6)$	2187(4)	$127(6)$
$\left.\mathrm{Cl} \mathrm{l}^{\prime}\right)$	694(6)	$-1505(6)$	2488(3)	108(6)
C(2)	147(6)	- 1947(6)	$2114(2)$	168(15)
C(3')	-922(5)	$-2287(6)$	2183(3)	$99(6)$
C(4)	-1027(6)	$-2009(7)$	2593(3)	105(6)
C(5)	$-37(7)$	$-1571(8)$	2788(2)	129(7)
$C\left(G^{\prime}\right)$	672(9)	-2078(7)	1772(3)	147(7)
C(7)	1744(9)	$-1767(10)$	1804(4)	169(10)
C(${ }^{\prime}$)	2291 (7)	-1325(10)	2177(5)	188(12)
C(${ }^{\prime}$)	1/66(6)	$-1194(1)$	$2520(4)$	174(11)
O(1)	0	0	1460(2)	110(2)
$\mathrm{P}(1)$	0	0	990(1)	78(1)
C(21)	$-1332(4)$	-716(4)	786(1)	$77(1)$
C(22)	- 1692(4)	$-310(4)$	476(2)	$87(1)$
C(23)	-2725(5)	-905(6)	323(2)	107(2)
C(24)	-3380(5)	$-1894(6)$	473(2)	112(2)
C(25)	-3042(5)	-2316(5)	780(3)	$119(2)$
C(26)	$-2028(5)$	$-1736(5)$	$936(2)$	103(2)
C(1H)	0	0	4431(27)	256(49)
$\mathrm{C}(2 \mathrm{H})$	0	0	5009	330(115)

cooling, a precipitate consisting of numerous crystals of regular rhombic shape could be isolated (yield $>95 \%$) and dried at $80100^{\circ} \mathrm{C}$. Decomp. temperature 248 $250^{\circ} \mathrm{C}$. Anal. Found: C. 68.63 ; H, 4.91; La, 18.92 . $\mathrm{C}_{\mathrm{S}} \mathrm{H}_{36}$ OPLa Calc.: C, 70.89; H, 4.72; La, 18.22%. [Sample dried, for comparison, only at room temperature. Anal. Found: C, $71.61 ; \mathrm{H}, 5.18 . \mathrm{C}_{48.5} \mathrm{H}_{40} \mathrm{OPLa}$ ($2 \cdot 0.5 \mathrm{MePh}$) Calc.: C, 73.09 ; H, 5.14%.] IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3055(\mathrm{~m}), 2884(\mathrm{w}), 1704(\mathrm{w}, \mathrm{br}), 159 \mathrm{l}(\mathrm{m}, \mathrm{sh})$, 1559(m,sh). 1484(m,sh), 1458(m,sh), 1438(vs), 1393(m,sh), 1361(w), 1328(m,sh), 1312(m), 1259(w), 1184(vs,br), 1121(s,sh), 1094(w), 1071(w), 1027(w), 997(m,sh), 943(w), 915(w), 862(min), 768(s), 755(s), $722(\mathrm{vs}), 696(\mathrm{vs}), 541(\mathrm{vs}, \mathrm{sh}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$, room temp.): see Table 7. ${ }^{31} \mathrm{P}$ NMR (in $\mathrm{C}_{6} \mathrm{H}_{6}$ vs. external $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$): one singlet at 36.67 ppm .

2.3. Preparation of $\left[\left(\mathrm{C}_{4} \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot \mathrm{OS}_{6}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]$ (3)

A solution of $0.105 \mathrm{~g}(0.52 \mathrm{mmol})$ of $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{SO}$ in 15 ml of toluene was added under stirring to \mathfrak{a} suspension of appropriately conditioned $\left[\left(\mathrm{C}_{9} \mathbf{H}_{7}\right)_{3}\right.$ La \cdot THF] (vide supra) in 20 ml of toluene. An almost clear mixture was quickly obtained. After stirring for one day,
filtration and concentrating the filtrate to half of its initial volume, the transparent solution (containing already a few suspended microcrystals) was cooled to $0^{\circ} \mathrm{C}$. Colourless crystals were isolated after a few days and dried in vacuo between 40 and $60^{\circ} \mathrm{C}$ (water bath). Yield $0.32 \mathrm{~g}(90 \%)$. Decomp. temperature $179-180^{\circ} \mathrm{C}$. Anal. Found: $\mathrm{C}, 67.72 ; \mathrm{H}, 4.58$; La, 19.89. $\mathrm{C}_{39} \mathrm{H}_{31} \mathrm{OSLa}$ Calcd.: C, 68.25; H, 4.51; La, 20.24\%. IR (KBr pellet, $\left.\mathrm{cm}^{-1}\right)$: 3063(w), 1704(w), 1609(w), 1581(w), 1554(w), $1476(\mathrm{~m}), 1457(\mathrm{~m}), 1444(\mathrm{~s}), 1393(\mathrm{~m}) .1323(\mathrm{w})$, 1312(w), 1227(w), 1205(w), 1158(m), $1091(\mathrm{~s}), 1047(\mathrm{~s})$, $1020(\mathrm{~m}), 998(\mathrm{~m}), 942(\mathrm{w}), 915(\mathrm{w}), 861(\mathrm{w}), 768(\mathrm{vs})$, $757(\mathrm{~m}), 743(\mathrm{~m}), 719(\mathrm{~m}), 695(\mathrm{vs}), 590(\mathrm{~m}), 538(\mathrm{~m}) .{ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 200 \mathrm{MHz}$, room temp.): see Table 7.

2.4. X-ray crystallography

Suitable single crystals of 1 and 2 were grown from toluene solutions at room temperature or at $0^{\circ} \mathrm{C}$. Selected crystals were positioned in carefully conditioned, and finally sealed, thin-walled Lindemann capillaries. The determination of Laue symmetry and the crystal orientation matrix were carried out by standard techniques making use of X-ray photographs similar to those described by Churchill et al. [20]. Details of relevance for the data collection for $\mathbf{1}$ and $\mathbf{2}$ are given in Table 2.

All crystallographic calculations were carried out by means of the shelx-93 and shelxtl-plus program set [21]. Heavy atoms were found from Patterson maps for 1 and direct methods for 2 . and other non-hydragen atoms were detected by Fourier techniques. The structures were refined by full-matrix least-squares techniques. Hydrogen atoms were included using a riding model with $\alpha(\mathrm{C}-\mathrm{H})=96 \mathrm{pm}$. Final refinement of position and thermal parameters (one unique isotropic parameter only for all hydrogen atoms) resulted in $R_{1}=$ $0.0393 . w R_{2}=0.0973$ for 1 and $0.0475,0.1175$ for 2. The atomic coordinates of $\mathbf{1}$ and $\mathbf{2}$ are given in Tables 3 and 4. Further details of the crystal structure investigation may be obtained from the Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany on yuoting the depository numbers CSD405567(1) and 405568(2).

3. General properties of 1,2 and 3

For an efficient preparation of all three adducts it has murned out to be favourable to apply 'conditioned' $\left[\left(\mathrm{C}_{4}, \mathrm{H}_{7}\right)_{3} \mathrm{La} \cdot \mathrm{THF}\right]$ (see Section 2), i.e. a species strongly depleted in THF. At room temperature the products $\mathbf{1 - 3}$ are only weakly soluble in toluene. Their solubility generally increases with temperature, but then decomposition cannot be strictly avoided. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ turned out to be a better solvent already at room temper-
ature; however, the ${ }^{1} \mathrm{H}$ NMR spectra taken in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ were clearly indicative of more facile decomposition than in toluene.

The sulphoxide adducts 1 and 3 are thermally more labile than the phosphinoxide adduct 2 . Thus, the decomposition temperature of the latter exceeds those of the former by at least 50 deg . Moreover, even under N_{2}. crystals of 1 and 3 tend to darken slowly at their surfaces. The wavenumbers of the $\nu(\mathrm{SO})$ absorptions of 1 and 3 (1038 and $1047 \mathrm{~cm}^{-1}$) do nor differ significantly from those of the uncoordinated sulphoxides (1048 of free MTSO and $1072 / 1037 \mathrm{~cm}^{-1}$ of free DPSO [22]). Correspondingly, the $\nu(\mathrm{PO})$ absorption of 2 appears at $1184 \mathrm{~cm}^{-1}$, only slightly below that of free TPPO ($1195 \mathrm{~cm}^{-1}[15,23]$). More strongly coordinated TPYO may even abson around $1050 \mathrm{~cm}^{-1}$ (e.g. [UCl_{4} (TPPO), ${ }_{3}$ 1045-1057 cm^{-1} [24]). The chemical shift of the ${ }^{31} P$ nucleus of 2 (36.67 pprn in $\mathrm{C}_{6} \mathrm{D}_{6}$) indicates weak deshielding relative to free TPPO (29.3 ppm [25]), probably because of a slighty more positive charge on the phosphorus atom in the lanthanum complexes.

Crystals of 2 dried only at room temperature always contained some toluene. This conclusion is supported by ${ }^{\prime} \mathrm{H}$ NMR spectroscopic results, elemental analysis (after only moderate or extensive drying) and some corresponding X-ray features. Drying at ca. $100^{\circ} \mathrm{C}$ ked to complete removal of the solvent molecules, however, under these conditions already part of the coordinated TPPO sublimed off too [26].

4. Crystal structure of $\left[\left(\mathrm{C}_{\mathbf{9}} \mathrm{H}_{\mathbf{7}}\right)_{\mathbf{3}} \mathrm{La} \cdot \mathrm{MTSO}\right]$ (1)

Although the crystal structures of at least four representatives of the general type $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Ln} \cdot \mathrm{OSR}^{\mathrm{R}} \mathrm{R}^{2}\right]$ ($\mathrm{Ln}=$ lanthanoid element) have been determined ($\mathrm{Ln}=$ $\mathrm{La}, \mathbf{R}^{\mathbf{1}}, \mathbf{R}^{\mathbf{2}}=\mathrm{Me}$ [27]; $\mathbf{L n}=\mathbf{P t}, \mathbf{Y b} . \mathbf{R}^{\mathbf{1}}=\mathbf{M e}, \mathbf{R}^{\mathbf{2}}=\mathrm{p}-$ $\mathrm{MeC}_{6} \mathrm{H}_{4} ; \quad \mathrm{Ln}=\mathrm{Pr} . \quad \mathrm{R}^{1}=2-\mathrm{Me}-\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{~N}, \quad \mathrm{R}^{2}=\mathrm{p}-$ $\mathrm{MeC}_{6} \mathrm{H}_{+}$[28]), the structure of 1 appears to be the first one of a related sulphoxide adduct to be reported in the open literature. Data of relevance for the crystal structure are collected in Table 2, and one perspective of the molecular structure of $\mathbf{1}$ is presented in Fig. 2. In accordance with the involvement of the pure (R) $(+)$ enantiomer of MTSO, the lattice of 1 adopts a chiral space group ($P 2_{1}$, see Table 2). The likewise chiral complex $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Pr} \cdot \mathrm{PTSO}\right]$ ($\mathrm{PTSO}=(\mathrm{R})-(+)-2-$ pyridyl-p-tolylsulphoxide) was found to crystallize in the same space group. The sunsctures of the latter three complexes will be sumitted for publication in this journal in due course.) A closer inspection of the structure of 1 (see Fig. 2) leaves no doubt that the molecular conformation should be atributed to type C of Table 1 (see also Fig. 1). Apparently, both the methyl group and the free electron pair of the sulphur atom prevent the

MTSO ligand from sterically adopting a position cisoid to the benzo group of the 'meridional' $\mathrm{C}_{9} \mathrm{H}_{7}$ ligand. The unique molecule present in the unit cell is devoid of any significant disorder, confirming the statement that only one distinct epimeric form of $\mathbf{1}$ is realized. The corresponding alternative epimer whose two 'equatorial' $\mathrm{C}_{9} \mathrm{H}_{7}$ ligand; are rotated (relative to those of 1) by angles of 180° about their (C_{5}-) ring normals is probably sterically more congested and hence likely to be less concentrated in solution.

Selected intramolecular distances and bond angles of 1 are listed in Table 5. The sulphoxide ligand is coordinated to the strongly oxygenophilic La^{3+} ion exclusively via its oxygen atom (non-bonding La \cdot. S distance 372.7 pm). The La-O distance exceeds that found in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La} \cdot \mathrm{UMSO}\right]$ (UMSO $=$ dimethyIsulphoxide) by only 3.4 pm [27], but is about 12 pm shorter than the $\mathrm{La}-\mathrm{O}$ bond in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La} \cdot \mathrm{THF}\right][29]$. The S-O bond is elongated by only 3.0 pm relative to that in free MTSO [30]. The La-O-S angle of $138.1(3)^{\circ}$ (Table 5) compares well with the Ln-O-S angles reported for [($\left.\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Pr} \cdot \mathrm{MTSO}\right]\left(143.1(1)^{\circ}\right.$ [28]), $\left[\mathrm{La}(\mathrm{DMSO})_{4}\left(\mathrm{NO}_{3}\right)_{3}\right]$ (132.6 and 141.1° [31]) and $\left[\mathrm{Pr}(\mathrm{DMSO})_{4}\left(\mathrm{NO}_{3}\right)_{3}\right]\left(132.5\right.$ and $\left.137.1^{\circ}[32]\right)$. The La-C distances (see Table 5) range between 279.4(5) and $308.2(5) \mathrm{pm}$ and match well with those reported for $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{La} \cdot \mathrm{L}\right]$ complexes with $\mathrm{L}=\mathrm{DMSO}$ and THF [27,29]. Although the two ring carbon atoms belonging to both the C_{5} and the C_{6} fragment of each $\mathrm{C}_{9} \mathrm{H}_{7}$ ligand are as usual slightly more distant from the metal ion than the three 'pure' \boldsymbol{C}_{5} carbon atoms, all three indenyl ligands of 1 can be considered as η^{3}-coordinated. The configuration of the chiral OSMe(p-tolyl)

Fig. 2. Molecular structure of \mathbf{J} viewed along its \mathbf{O}-La axis.

Tahble 5
Selected bond lengths (pm) and bond angles (${ }^{\circ}$) for 1

$\mathrm{La}-\mathrm{O}(1)$	245.3(5)	La-C(1)	280.8(5)
La-C(2)	280.44)	La-C(3)	294.5(5)
La-C(4)	208.2(5)	La-C(5)	296.8(4)
La-C(1])	288.4(7)	La-C(12)	285.1 (6)
La-C(13)	286.3(6)	La-C(14)	289.2(7)
La-C(15)	292.0.7)	La-C(21)	293.7(6)
Lat-C(22)	299.4(5)	$\mathrm{La}-\mathrm{C}(23)$	288.6(5)
La-C(24)	279.4(5)	$\mathrm{La}-\mathrm{C}(25)$	280.3 (6)
La-Cenl	255.3	$\mathrm{LJ}-\mathrm{Cen} 2$	262.1
La-Cen 3	261.7	$\mathrm{S}(1)-\mathrm{O}(1)$	152.3
$\mathrm{S}(1)-\mathrm{C}(31)$	178.5(5)	$\mathrm{S}(1)-\mathrm{C}(38)$	179.8 (7)
C(1)-C(2)	138.5(10)	$\mathrm{C}(1)-\mathrm{C}(5)$	$142.9(8)$
$\mathrm{C}(2)-\mathrm{C}(3)$	141.1(10)	$\mathrm{C}(3)-\mathrm{C}(4)$	143.697)
C(4)-C(9)	140.6(8)	$\mathrm{C}(4)-\mathrm{C}(5)$	$143.4(9)$
C(5)-C(6)	142.3(8)	C(6)-C(7)	136.1(9)
$\mathrm{C}(7)-\mathrm{C}(8)$	141.7(13)	C(8)-C(9)	137.4(9)
C(11)-C(12)	141.4(10)	C(11)-C(15)	142.8(9)
C(11)-C(16)	143.3(11)	$\mathrm{C}(12)-\mathrm{C}(13)$	141.3(10)
$\mathrm{C}(13)-\mathrm{C}(14)$	138.4(11)	$\mathrm{C}(14)-\mathrm{C}(15)$	141.3(10)
C(15)-C(19)	144.1(11)	$\mathrm{C}(16)-\mathrm{C}(17)$	134.2(13)
C(17)-C(18)	137(2)	C(18)-C(19)	138.7(14)
C(21)-C(29)	142.4(0)	C(21)-C(25)	$143.3(8)$
C(21)-C(22)	143.9(10)	C(22)-C(23)	$142.3(8)$
C(22)-C(26)	144.1(8)	$\mathrm{C}(23)-\mathrm{C}(24)$	141.0(8)
C(24)-C(25)	141.29)	$\mathrm{C}(26)-\mathrm{C}(27)$	136.6(13)
C(27)-C(28)	141(2)	C(26)-C(29)	140.3(12)
C(34)-C(37)	152.018)		
O(1)-La-Cen	96.2	O(1)-La-Cen2	98.3
O(1)-La-Cen 3	101.1	Cen1-La-Cen2	118.3
Cen2-La-Cen 3	114.8	Cenl-La-Cen 3	120.3
S(1)-O(1)-La	138.1 (3)	$\mathrm{O}(1)-\mathrm{S}(1)-\mathrm{C}(31)$	105.9(3)
O(1)-S(1)-C(38)	114.5(4)	C(31)-S(1)-C(38)	97.2(3)
C(36)-C(31)-S(1)	118.2(4)	$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{S}(1)$	$120.3(4)$

fragment in 1 corresponds to that of free (R)-(+)MTSO. Moreover, the angles $\mathrm{O}-\mathrm{S}-\mathrm{C}(\mathrm{Me}), \mathrm{O}-\mathrm{S}-$ C (tolyl) and C(Me)-S-C(tolyl) of $104.5(4), 105.9(3)$ and $97.2(3)^{\circ}$ respectively are practically identical with those ($105.5,106.5$ and 97.6° respectively) of uncoordinated (R)-(+)-MTSO [30]. Finally, the Flack parameter, 0.0084 , of 1 (with c.s.d. 0.0207 , expected value 0 within 3 e.s.d.s for correct absolute structure) confirms identical absolute configurations, and is in agreement with the findings of Axelord et al. [33] and de la Camp and Hope [30].

5. Crystal structure of [(C, $\left.\left.\mathbf{H}_{\mathbf{7}}\right)_{\mathbf{3}} \mathrm{La} \cdot \mathrm{TPPO}\right]$ (2)

In spite of a widespread application of the TPPO ligand, even in lanthanoid chemistry, the crysial structure of only one representative of the complex type $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{M} \cdot \mathrm{TPPO}\right] 20$ has been described in a Ph.D. Thesis ($\mathrm{M}=\mathrm{Yb}$ [34]). The related tris(indenyl) complex 2 crystallizes, in contrast to 1 and 20, in the non-chiral space group $R \overline{3}$ (Table 2), although its molecular structure (Fig. 3) is obviously of type A. Hence, both

Fig. 3. Molecular structure of 2 viewed along the $\mathrm{P}-\mathrm{O}-\mathrm{La}$ axis for one case of disonder only.
enantiomers of the stereogenic $\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{LaO}$ fragment must be present in the unit cell of 2 . Owing to a strictly linear La-O-P backbone, each molecule possesses one C_{3} axis as a dominating symmetry element, so that not only all three $\mathrm{C}_{9} \mathrm{H}_{7}$ ligands, but likewise the three phosphonis-bonded $\mathrm{C}_{6} \mathrm{H}_{5}$ groups, become crystallographically equivalent. Each $\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ fragment is as usual propeller-shaped [15-17], acting as a second stereogenic centre of the molecule, so that in fact two crystallographically equivalent diastereomers should result. In view of the very special nature of the two stereogenic centres of 2, we did not, however, make use here of the fundamental Cahn-Ingold-Prelog rules [35,36$]$ to assign the two diastereomers appropriately as an (R,S)/(S,R) or (S,S)/(R,R) pair. [Correspondingly, also, the prefixes 'threo-' and 'erythro-' (for pairs of diastereomers with two stereogenic centres) do not appear applicable here to arrive at a meaningful differentiation.]

The two diastereomers of 2 contain non-disordered $\mathrm{OP}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ propellers whose configurations behave ex-
actly as mutual mirror images (Fig. 4). After Bradley et al. [15] had briefly mentioned the alternative configurations of the PPh_{3} fragment, Dunitz and coworkers $[37,38]$ studied extensively the configurations of free and coordinated TPPO. More recently, Brunner et al. [17] have drawn attention to the potential chirality of the PPh_{3} fragment again. In one case, they have succeeded in studying single crystals of both epimers with respect to the two TPPO configurations of a ruthenium halfsandwich complex with three stereogenic centres. Interestingly, most of the reponed crystal strictures of TPPO-containing metal complexes, ireluding that of 20, have turned out to involve TPPO units in either a rightor left-helical configuration only.

Unlike the three phenyl groups, all indenyl ligands of 2 turn out to be strongly disordered. For this reason, the C_{5} units were considered for the calculation as fixed. regular pentagons, and the C_{6} units as fixed regular hexagons respectively. Fig. 5 explains the actual mode of disorder for one of the two diastereomers of 2. Optimal convergence resulted for an occupancy factor of 0.5 . Similar situations are frequently found in the literature, one strongly related example being the dinuclear $\left[\left\{\left(\mathrm{C}_{9} \mathrm{H}_{7}\right)_{3} \mathrm{Nd}\right)_{2} \mathrm{Cl}\right]$ anion of compound 14 [12], wherein only the two 'meridionally' oriented indenyl ligands are disordered. In $\mathbf{2}$, the C_{5} centre of situation (a) of Fig. 5 deviates from the C_{5} centre of situation (b) by 43.7 pm (deviation of the two corresponding centres of the adjacent C_{6} unit 141.9 pm !). Related $\mathrm{C}_{9} \mathrm{H}_{7}$ units in the disordered positions (a) and (b) are no longer coplanar.

The La-O distance in 2 (Table 6) is even slightly shorter than in 1 and in the complex $\left[\left[\mathrm{Me}_{3} \mathrm{Si}_{2} \mathrm{~N}_{3} \mathrm{La}\right.\right.$. TPPO] [15] (by 6.6 and 1.8 pm). Moreover, the La-O distance in 2 exceeds the $\mathrm{Yb}-\mathrm{O}$ distance in $\left[\left(\mathrm{C}_{5} \mathrm{H}_{3}\right)_{3} \mathrm{Yb}\right.$ - TPPO] [34] by 12.7 pm , which difference is significantly smaller than that of the ionic radii of La^{3+} and Yb^{3+} (ca. 17.2 pm). The O-P distance in 2 of 148.6 pm is aimost unchanged compared with that of free TPPO (149.1-149.4 pm [38], 146-147 pm [39]). In view of the strict linearity of the La-O-P backbone, the La-O bond in 2 might even profit from additional $O \rightarrow$ La

Fig. 4. Schematic view of the (wo enantioneric configurations of the PP_{3}, fragment in 2.

Fig. S. Schematic representation of the two cases of disorder of one indenyl frugment of complex 2. Datted lines, situation (b).
π-donor contributions. $\ln \left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Yb} \cdot \mathrm{TPPO}\right]$, the Yb -O-P angle is significantly more 'acute' than in $2\left(161.8^{\circ}\right.$ [34]. The five La-C distances in 2 vary between 269.6 and 295.6 pm (Table 6).

According to the elemental analyses and ${ }^{1} \mathrm{H}$ solution NMR speetra, crystals of 2 dried at room temperature should contain non-bonded solvent (i.e. toluene) molecules. In fact, crystallographically, two extra 'atoms' have been detected on the C_{3} axis of each molecule. The appearance of additional 'atom'-like features on the electron density map is most probably due to strongly disordered 'guest' molecules. Situations like this are quite common and may be met particularly when the refinement converges towards a comparatively high R value [40].

6. Solution ${ }^{1} \mathrm{H}$ NMR spectroscopy

Our interest in the solution NMR spectra of the two title complexes 1 and 2 . as well as of the related

Table 6
Selected bond lengths (pm) and hond angles (${ }^{\circ}$) for 2

LiA(i)-O(1)	238.7 (6)	O(I)-P(1)	148.66)
$\mathrm{P}(1)-\mathrm{C}(21)$	179.5(5)	C(21)-C(26)	$139.207)$
C(21)-C(22)	137.6(7)	$\mathrm{C}(22)-\mathrm{C}(23)$	139.1(8)
$\mathrm{C}(23)-\mathrm{C}(24)$	135.1(9)	C(24)-C(25)	(36.3(9)
C(25)-C(26)	137.09)		
disorder a		disorder b	
La(1)-C(1)	295.6(6)	$\mathrm{La}(1)-\mathrm{C}\left(1^{\prime}\right)$	295.6(6)
Lax 1 -C(2)	295.5(6)	$\left.\mathrm{La}(1)-\mathrm{Cl} 2^{\prime}\right)$	$245.5(6)$
La(1)-C(3)	289.3(8)	Lal $)$ - $\mathrm{C}\left(3^{\prime}\right)$	289.3 (8)
La(1)-C(4)	279.6(9)	$\left.\mathrm{La}(1)-\mathrm{Cl} 4^{\prime}\right)$	279.6(9)
Lar(1)-C(5)	289.3(8)	$\mathrm{La}(1)-\mathrm{C}\left(5^{\prime}\right)$	289.3(8)
La(1) . . R51	265.1	La(1) . . R $\mathbf{R} 2$	265.1
R51 \cdots R52	43.7	R61 \cdots R 62	141.9
P(1)-Of()-La(1)	180.0	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(21)$	111.02(14)
$\mathrm{C}(21)-\mathrm{P}(1)-\mathrm{C} 21 \mathrm{a})$	107.9		
O(1)-La(1)-R51	95.6	O(1)-La(1)-R52	105.1
R51-La(1)-R51a	119.1	R53-La(1)-R52a	113.5
R61-R51-La(1)	97.1	R62-R52-La(1)	96.8
RS1-La(1)-R52	9.5		

diphenyl sulphoxide (DPSO) adduct 3, was mainly due to the question of whether any of the distinct molecular conformations detectable in the crystalline state would still be retained in solution. In Fig. 6, a survey of the ${ }^{1} H$ NMR spectra of $\mathbf{1 , 2} 2$ and 3 (solvent $C_{6} D_{6}$) is shown for the spectral range 5.5 to 8.0 ppm , wherein all sesonances of the indenyl protons should appear. Strictly speaking, all three spectra are of higher order, although the following discussion will refer tentatively to a quasi-first-order appearance. While up to ca. 6.8 ppm only the resonances of the three C_{5} protons are seen, the subrange above ca. 6.8 ppm is partially perturbed by the extra resonances of different aryl groups (i.e. of p -tolyl in the case of $\mathbf{1}$ and phenyl in the case of 2 and 3). Below 5.5 ppm only complex 1 displays the two equally intense methyl resonances of its MTSO ligand (see Table 7). In contrast to sumples of 2 dried at $100^{\circ} \mathrm{C}$, solutions of crystals dried only at room temperature gave rise to an additional signal at 2.11 ppm (solvent $\mathrm{C}_{6} \mathrm{D}_{6}$), which has been ascribed to toluene molecules contained in the crystals. The relative intensity of this extra resonance suggests the composition $2 \cdot 0.5 \mathrm{MePh}$ (vide supra). In $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution, still another resorance occurs between 3.0 and 3.5 ppm , which is tentatively assigned to free indene, or to an indene derivative. Nevertheless, a set of resonances typical of indenyl units appears throughout at slightly higher fields than in $\mathrm{C}_{6} \mathrm{D}_{6}$ solution. The phenyl resonances are, on the contrary, shifted towards lower field. The resonance patterns of 2 and 3 sirongly resemble those expected, and actually reported $[41,42]$, for complexes with rapidly (on the NMR timescale) rotating $\mathrm{C}_{9} \mathrm{H}_{7}$ ligands. Owing to this intramolecular motion, each $\mathrm{C}_{9} \mathrm{H}_{7}$ skeleton becomes symmetrical with respect to a mirror plane passing its C2 atom (Fig. 6). Consequently, in addition to one doublet and one triplet for the three C_{3} protons, one AA $^{\prime} \mathbf{B B}^{\prime}$ multiplet consisting essentially of two well-separated quasi-quartets (due to the four benzo protons) appear. In contrast, owing to the presence of a dissymmetric sulphur atom, the virtual mirror planes are absent in adduct 1 , and the resonances of the pairwise prochiral indenyl protons $\mathrm{HI} / \mathrm{H} 3, \mathrm{H} 4 / \mathrm{H} 7$ and $\mathrm{H} 5 / \mathrm{H} 6$ experi-

Fig. 6. Comparison of the 'H NMR spectra of 1,2 and 3 between 5.6 and 8.0 ppm (L: resonance of $\mathrm{C}_{6} \mathrm{D}_{6}$ of $98 \% \mathrm{D}$). Numbers of contespondiagg ring cartoon atoms are noted except for the phenyl/benzo resonance ranges of 2 and 3.

Table 7
Survey of observed 'H NMR das for 1, 2 and 3 (all measurements at room temperature)

Compound	Resomances of $\mathrm{C}_{9} \mathrm{H}_{7}$ protons δ (ppm)				Resomances of prutons of base L δ (ppman)	
	H-1 and/or 3	H-2	H-4 and/or 7	H.5 and/or 6	CH_{3}	$\mathrm{C}_{5} \mathrm{H}_{4 / 5}$
$\left.\overline{1(360 M H z}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$	$5.81(\mathrm{~s}, 3 \mathrm{H})^{2}$	$6.44(\mathrm{t}, 3 \mathrm{H})^{2}$	7.32 (d. 3 H$)^{\text {a }}$	6.93 ($1,3 \mathrm{H})^{3}$	$\begin{aligned} & 1.94(\mathrm{~s}, 3 \mathrm{H}, \\ & \mathrm{S} \text {-bonded) } \end{aligned}$	$6.84(\mathrm{~d}, 2 \mathrm{H})^{\text {c }}$
	$6.14(\mathrm{~s}, 3 \mathrm{H})^{2}$	$J_{H H}=\mathbf{3 . 3 5 ~ H z}$	$J_{\mathrm{HH}}=8.20 \mathrm{~Hz}$	$J_{\mathrm{HH}}=7.4 \mathrm{~Hz}$	$\begin{aligned} & 1.80(\mathrm{~s}, 3 \mathrm{H}, \\ & -\mathrm{C}_{6} \mathrm{H}_{4} \text {-bonded) } \end{aligned}$	$J_{\text {HH }}=8.07 \mathrm{~Hz}$
			$\begin{aligned} & 7.66(\mathrm{~d} .3 \mathrm{H})^{2} \\ & J_{\mathrm{HH}}=8.22 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 7.01(\mathrm{~L}, 3 \mathrm{H}) \\ & J_{\mathrm{HH}}=7 \mathrm{~Hz} \end{aligned}$		6.99-7.04 (d, 2H) $=0$
$2\left(200 \mathrm{MHz} . \mathrm{C}_{6} \mathrm{D}_{6}\right)$	5.92 (d, 6H)		7.22 (q. 6H) ${ }^{\text {a }}$	$6.95(q, 6 H)$		$7.05(\mathrm{~mm} .9 \mathrm{H})^{\circ}$
	$\begin{aligned} & J_{\mathrm{HH}}=3.36 \mathrm{~Hz} \\ & 5.62(\mathrm{~d}, 6 \mathrm{H}) \end{aligned}$	$\begin{aligned} & J_{\mathrm{HH}}=3.37 \mathrm{~Hz} \\ & 6.20(\mathrm{t}, 3 \mathrm{H}) \end{aligned}$	$J_{\text {HH }}=3 \mathrm{~Hz}^{\text {b }}$ $7.05(\mathrm{q} .6 \mathrm{H})^{\text {a }}$	$\begin{aligned} & J_{\mathrm{HH}}=3 \mathrm{~Hz}{ }^{\mathrm{b}} \\ & 6.84(\mathrm{q}, 6 \mathrm{H})^{2} \end{aligned}$		$7.33(\mathrm{~m} .6 \mathrm{H})^{d}$
2 (200 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$)	$J_{\text {HH }}=3.36 \mathrm{~Hz}$ 5.97 (di.6H)	$\begin{aligned} & J_{\mathrm{HH}}=3.34 \mathrm{~Hz} \\ & 6.43(\mathrm{t}, 3 \mathrm{H}) \\ & J_{\mathrm{HH}}=3.37 \mathrm{~Hz} \end{aligned}$	$J_{\text {HH }}=3 \mathrm{~Hz}^{\text {b }}$	$J_{\text {HH }}=3 \mathrm{~Hz}{ }^{\circ}$ $6.90(\mathrm{~m}, 6 \mathrm{H})$		$\begin{aligned} & 7.54(\mathrm{~m}, 15 \mathrm{H})^{\mathrm{c}} \\ & 6.89(\mathrm{~m}, 6 \mathrm{H})^{\mathrm{c} . e} \end{aligned}$
3 (200MHz. $\mathrm{C}_{6} \mathrm{D}_{6}$)	$\begin{aligned} & 5.97(\mathrm{~d} .6 \mathrm{H}) \\ & J_{\mathrm{HH}}=3.36 \mathrm{~Hz} \end{aligned}$		$7.84(\mathrm{q}, 6 \mathrm{H})$ $J_{\mathrm{HH}} \approx 3 \mathrm{~Hz}$	$\begin{aligned} & 6.90(\mathrm{~m}, 6 \mathrm{H}) \\ & J_{\mathrm{HH}}=3 \mathrm{~Hz}{ }^{\mathrm{b}} \end{aligned}$		$\begin{aligned} & 6.89(\mathrm{~m}, 6 \mathrm{H}){ }^{6} \\ & 7.24(\mathrm{dd.}, 4 \mathrm{H}){ }^{2} \\ & J_{\mathrm{HH}}=7.65 \mathrm{~Hz} \end{aligned}$

[^2]ence diasterotopic spliting. Thus, the initial doublet of the atoms H 1 and H 3 (to be seen in the spectra of 2 and 3) is split into two separate resonances of some faint additional structuring. Moreover, the C_{6} proton multiplet separates into two quasi-doublets (of $\mathrm{H} 4 / \mathrm{H} 7$) and two riplets (of $\mathrm{H} 5 / \mathrm{H} 6$). The resulting quasi-first-order spectrum of 1 is similar to that of the recently reported [43] complex [$\mathrm{O}\left\{\mathrm{SiMe}_{2} \mathrm{C}_{9} \mathrm{H}_{6}\right\}_{2} \mathrm{ZrCl}_{2}$], 21, tetramethyl in which two indenyl ligands are connected by a disiloxane bridge. Interestingly, the diasterotopic splitting of the proton pairs $\mathrm{H} 1 / \mathrm{H} 3$ and $\mathrm{H} 4 / \mathrm{H} 7$ of 1 is of the same magnitude as in 21 (0.33 vs. 0.34 ppm), suggesting that the chiral sulphur atom influences both the C_{5} and the C_{6} portions of the ligand similarly, probably owing to intramolecular $\mathrm{C}_{9} \mathrm{H}_{7}$ rotation. a resonance pattern very similar to that displayed by complex 1 is in fact also expected for a strictly rigid type A complex. In the presence of (R)-(+)-MTSO, however, two very similar, but not strictly identical, spectra of different intensity should occur, as two chemically slightly different epimers are expected to coexist in solution. The observation of a spectrum of one singular species only confirms that at least at room temperature, rapid epimerization (owing to intramolecular ligand mobility) takes place in solution. Unfortunately, the low solubility of all three complexes $\mathbf{1 - 3}$ in deuterated solvents principally suitable for low temperature NMR studies has so far not admited any NMR experiments below room temperature.

Acknowledgements

The authors express their gratitude to the Friedrich-Ebert-Stiftung (Bonn) for the generous donation of a fellowship to Jingwen Guan, and to Professor U. Behrens (Hamburg) and Dipl.-Chem. E. Siebel (Hamburg) for valuable advice to overcome numerous problems during the crystallographic study.

References

[1] K. Mislow and J. Siegel. J. Am. Chem. Soc., IO6 (1984) 3319.
[2] J.M. Burns and P.G. Laubereau, horg. Chem., 10 (1971) 2789.
[3] M.R. Spirlet, J. Rebizant and J. Goffan, Acta Crystallogr., C34 (1987) 354.
[4] J. Rebizant. M.R. Spirlet. G. van den Bossche and J. Goffart. Acta Cn:stallogr., C44 (1988) 1710.
[5] M.R. Spirlet. J. Rebizant and J. Gotliart, Actu Cristallogr.. B.58 (1982) 2400.
[6] J. Meunier-Piret and M. van Meerssche. Bull. Soc. Chim. Belg. 93 (1984) 299.
[7] M.R. Spirlet, J. Rebizant, S. Betonviile and J. Gofiart, Acta Cnustallogr., C46 (199) 1234.
[8] M.R. Spirlet. J. Rebizant. S. Bettonvilte and J. Goffart. Acta Crystallogr. C48 (1992) 1221.
[9] M.R. Spirlet. J. Rebizant. S. Bettonville and I Goffart. I Organomet. Chem., 460 (1993) 177.
[10] A. Zazzetta and A. Greco. Acta Crystallogr.. B35 (1979) 457.
[11] Z. Ye. S. Wang, D. Kong and X. Huang, J. Organomet. Chem., $49 /$ (1995) 57; Y. Su, Z. Jin and W. Chen, J. Chin. Rare Earth Soc. 8 (1990) 106.
[12] M. Chen. G. Wu, w. Wu, s. Zhuang and Z. Huang, Organometallics, 7 (1988) 802.
[13] Q. Shen et al., unpublished results (1991) and personal communication (1996): S. Wang. D. Kong, Z. Ye and X. Huang, J. Organomet. Chem., 496 (1995) 37.
[14] J. Xia, Zh. Jin, G. Lin and W. Chen, J. Organomet. Chem,, 408 (1991) 173.
[15] D.C. Bradley, J.S. Ghotra, F.A. Han, M.B. Hursthouse and P.R. Raithby, J. Chem. Soc., Dakon Trans., (1977) 1166.
[16] H. Brunner, B. Hammer, C. Krigger, K. Angermund and I. Bernal, Orgonometalics, 4 (1985) 1063.
[17] H. Brunner, R. Oeschey and B. Nuber, Angew. Chem.. 106 (1994) 94 1; Angew. Chem., Int. Ed. Engl., 33 (1994) 866.
[18] M.D. Taylor and C.P. Carter, J. Morg. Nurl. Chem., 24 (1962) 387.
[19] M. Tsutsui and H.J. Gysling, J. Am. Chem. Soc., 91 (1969) 3175.
[20] M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
[21] G.M. Sheldrick, shelxs-86, Acta Cnustallogr., A46 (1990) 467; shelx-93. Program for the Refinement of Crystal Stractures, Universităt Gőtringen, Germany, 1993; shelxil-plus. Release $4.21 / \mathrm{v}$, Siemens Analytical X-Ray Instruments Inc., Madison. Wi; A.L. Spek, platon, Acta Crystallogr., A46 (1990) C34.
[22] K.K. Andersen. J. Org. Chem., 29 (1964) 1954; J. Stehr, Doctoral Dissertation, Universitat Hamburg. Germany. 1993. p. 119.
[23] F.A. Coton, R.D. Bames and E. Bannister, J. Chem. Soc., (1960) 2199 G.B. Deacon and J.H.S. Green. Spectrochim. Actn. 24A (1968) 845
[24] J. Gofrarl, J. Piret-Meunier and G. Duyckaerts, Inorg. Nutl. Chem. Lett., 16 (1980) 233.
[25] T.A. Albright, W.J. Freeman and E.E. Schweizer, J. Org. Chem., 40 (1975) 3437; N. Burford, B.W. Royan and R.E.v.H. Spence. J. Chem. Soc., Dalton Trans., (1990) 2t11; J.A. Davies, S. Dutremez and A.A. Pinkerton, Inorg. Chem., 30 (1991) 2380 and references cited therein.
[26] T.J. Marks, Progr. Inorg. Chem., 24 (1978) 51 and references cited therein.
[27] M. Adam, Doctoral Disseriaion. Universität Hamburg. Germany, 1990, p. 50.
[26] J. Slehr, Doctural Dissertuiom, Univensilit Hamburg, Germany, 1993.
[29] R.D. Rogers, J.L. Atwood, A. Emad. D.J. Sikora and M.D. Rausch, J. Organomet. Chem., 216 (1981) 383.
[30] U. de la Camp and H. Hope, Acta Cristallogr., 826 (1970) 846 and references cited therein.
[31] K.K. Bhandary and H. Mandhar, Acta Censfallogr., B29 (1973) 1093.
[32] Y.H. Lin, N.H. Hu, Q.L. Zheng, S.Z. Liao, S.X. Wu, E.D. Jiang and M.Y. Wu. Acta Chim. Sinica, 42 (1984) 372.
[33] M. Axelord, P. Bickart, J. Jacobus, M.M. Green and K. Mislow. J. Am. Chem. Soc., 90 (1968) 4835.
[34] P.A. White. Ph.D. Thesis, Monash University, Clayton, Vic., Australia, 1993.
[35] R.S. Cahn, C.K. Ingold and V. Prelog, Experientia. 12 (1956) 81.
[36] R.S. Cahn, S.C. Ingold and V. Prelog, Angew. Chem., 78 (1966) 413: Angeu. Chem. Imt. Ed. Engl., 5 (1966) 385.
[37] E. Bye, W.B. Schweizer and J.D. Dunitz, J. Am. Chem. Soc., 104 (1982) 5893 .
[38] C.P. Brack, WR. Schweizer and ID. Thmitz, J. Am Chmm. Soc., 107 (1985) 6964.
[39] G. Bandoli. G. Bortolozzo. D.A. Clemente. U. Croatto and C. Ралattoni, J. Chem. Soc. A, (1970) 2778: K.S. Rao, Can. J. Phys.. 36 (1958) 1526; N.L. Singh, Can. J. Phys., 37 (1959) 136.
[40] P.R. Ashron, C.G. Classens, W. Hayes, S. Menzer, J.F. Stod dart, A.J.P. White and D.J. Williams, Angew. Chem., 107 (1995) 1994; Angew. Chem., Inr. Ed. Engl., 34 (1995) I863; P.R. Ashton, E.J.T. Chrystal, P.T. Glirk, S. Menzer, C. Schiavo, J.F. Stoddar, P.A. Tasker and D.J. Williams, Angew.

Chem. 107 (1905) 2001; Angew: Chem.. Int. Ed. Engl., 34 (1995) 1869. S. Anderson, H.L. Adderson, A. Bashall, M. McParlin and J.K.M. Sanders, Angew. Chem., 107 (1935) 1196; Angew. Chem. Int. Ed. EngI., 34 (1995) 1096.
[4I] J.H. Osiecki. CJ. Hoffman and D.P. Hollis, J. Orgonomet. Chem., 3 (1965) 107; R.B. King and M.B. Bisnette. Inorg. Chem.. 3 (1964) 796.
[42] P.E. Rakita and A. Davison. Inorg. Chem., 8 (1969) 1164.
[43] H. Naderer, E. Siebel and R.D. Fischer, J. Orgunomer. Chem., 518 (1996) 181.

[^0]: ${ }^{\bullet}$ Corresponding author.

[^1]: According to stotements in the literature.

 - $\mathrm{NC}_{5} \mathrm{H}_{5}=$ pyridine.
 * THF = tetrahydrofuran.

 Crysial structure with two non-equivalent motecules per unit cell.

[^2]: ${ }^{2}$ Idealized designation of multipliciry.
 ${ }^{6}$ Averaged value only.

 - Covered partially by indenyt rescanances.
 d Protons in ortho positions to S or P aroms.
 - Prorons in meta and/or para positions.

